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EXECUTIVE SUMMARY 

The project focused on depth-integrated modeling of coastal wave and surf-zone processes in 
support of computational fluid dynamics (CFD) simulation of ship motions. There were two 
components of the project involving two MS and one PhD candidate under the guidance of the 
principal investigator. The first was the development of a numerical dispersion relation for a 
family of Boussinesq-type equations commonly used in modeling of coastal wave 
transformation. The relation depicts numerical dissipation and dispersion in wave propagation 
and provides guidelines for model setup in terms of temporal and spatial discretization. The 
second component was an extension of existing depth-integrated wave models to describe 
overtopping of coastal reefs and structures along with series of CFD and laboratory experiments 
for model validation. The basic approach utilizing the HLLS Riemann solver performs 
reasonably well and produces stable and efficient numerical results for practical application. 
Although the two components were performed separately, they both contribute to improved 
capabilities in modeling of the coastal wave environment that can provide input to three-
dimensional seakeeping analysis. 
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1. Introduction 

Seakeeping analysis has traditionally been focused on dynamic response of vessels in the open 
ocean. As the attention is shifted to the littoral, a capability gap becomes obvious in the naval 
research and ship design communities. The distinct wave processes in the coastal region result in 
vessel loads and motions that are significantly different from those in the open ocean. Recent 
advances in depth-integrated models have enabled computations of wave transformation from 
the open ocean to the coast to provide important information for seakeeping analysis. However, 
such endeavors involve appreciable numerical errors and complex near-shore flows that might 
present a challenge to practical application. 

Most coastal wave models are based on finite difference solution of Boussinesq-type equations. 
The depth-integrated governing equations express the vertical flow structure in terms of high-
order spatial derivatives of the horizontal velocity through the irrotational flow condition 
(Peregrine, 1967). Subsequent developments have improved the dispersion and nonlinear 
properties, but greatly increased the complexity of the governing equations (e.g., Madsen et al., 
1991; Nwogu, 1993; Wei et al., 1995; Madsen and Schäffer, 1998; Gobbi et al., 2000; Fuhrman 
and Madsen, 2009). Since the depth-integrated formulation cannot handle an overturning free 
surface, these early Boussinesq-type models typically utilized an empirical approach to 
approximate energy dissipation due to wave breaking. Roeber et al. (2010) and Roeber and 
Cheung (2012) introduced a shock-capturing scheme for modeling of breaking waves as flow 
discontinuities and validated their model with laboratory experiments conducted at Oregon State 
University.  

Following the exponential growth of computing resources and parallel pursuit of highly 
nonlinear and dispersive theories, present-day computational models based on Boussinesq-type 
equations are being applied over vast regions from deep to shallow water with increasing 
resolution. The computational scheme, however, does not explicitly solve the governing system 
of partial differential equations (Abbott, 1976). Discretization schemes involve numerical 
dispersion and dissipation that distort the true character of the governing equations. The leading 
term in the truncation error contains a derivative of the same order as the dispersion terms in 
Boussinesq-type equations. Such numerical errors have been studied extensively for the shallow-
water equations (Imamura et al., 1988; Yoon et al., 2007; Wang and Liu, 2011), which represent 
a leading-order approximation of the Boussinesq-type equations. Tam and Webb (1993) 
proposed a wavenumber-based discretization scheme to preserve the dispersion relation of the 
governing equations, but there has been no research on the effects of numerical dispersion in 
Boussinesq-type equations and the resulting wave propagation characteristics.  

Overtopping on coastal reefs or structures becomes an importance process as modeling of wave 
transformation extends into the nearshore region. George (2008) included effects of a bottom 
step as a forcing or source term in the Riemann problem and derived an approximate solver for 
the augmented system. The resulting model reproduces field and laboratory measurements of 
dam-break flows over rugged mountain terrain (George, 2011). Murillo and Garcia-Navarro 
(2010, 2012) generalized the effects of the bottom step as a hydrostatic force on the flow. 
Implementation of the resulting solver, known as HLLS (S for step), in one and two-dimensional 
nonlinear shallow-water models produces good agreement with analytical solutions and 
laboratory measurements. Application of these Riemann solvers has so far been limited to 
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stepwise approximation of irregular topography for conservation of the hyperbolic flow 
character. Although these solvers do not include vertical flows to physically describe 
overtopping, they can better approximate the resulting characteristic flows for modeling of 
coastal wave processes. 

The project aimed to improve the fidelity of coastal wave modeling in support of seakeeping 
analysis. The efforts included development of a numerical dispersion relation for the Boussinesq-
type equations using the spectral method of Tam and Webb (1993) and extension of the 
capability to describe wave overtopping using the HLLS Riemann solver of Murillo and Garcia-
Navarro (2010, 2012). Two MS and one PhD candidate worked on the project under the 
guidance of the principal investigator. This report provides a synopsis of their research and 
development work. More detailed description of the project can be found in their theses and 
publications (Heitmann et al., 2015; Stephenson, 2015; Wesley, 2015; and Wesley and Cheung, 
2016). 

2. Numerical Dispersion Relation 

Let t and x denote time and space for the depth-integrated wave propagation problem. The 
Boussinesq-type equations can be written in the matrix form as  

௧܃ + ௫(܃)۴ =  (11) (܃)܁

where U is the vector of conserved variables, F(U) is the flux vector, and S(U) contains the 
source and dispersion terms. The governing system of partial differential equations is modified 
through its discretization, providing a family of solutions dependent upon the sampling intervals 
x and t in time and space as well as the numerical scheme. We focus on the solution of a semi-
implicit scheme composed of linear multi-step time integration and spatial central difference, 
which collectively preserve the frequency dispersion relation intrinsic to the partial differential 
equations (Webb and Tam, 1993). 

Applying Fourier-Laplace transforms to the discrete approximation of the governing equation 
(1), the system of modified partial differential equations is mapped into spectral space in terms of 
the angular frequency  and wave number k for derivation of the numerical dispersion relation: 
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where h is water depth, g is gravitational acceleration,  and 1 are dispersion coefficients, and 
ഥ߱  and ഥ݇

݊ are the frequency and wave number resolved by the numerical scheme. The relation 
defines the dispersion and dissipation characteristics of the numerical model in terms of x and 
t. The effective resolutions ഥ߱t and ഥ݇݊ݔ are obtained from Laplace and Fourier transforms of 
the time integration and spatial discretization schemes. If the physical resolutions t and kx 
are identical to the effective resolutions, the numerical dispersion relation reduces to 

߱ଶ = ݃ℎ݇ଶ ቂ
ଵିఈభ(௞௛)మ

ଵିఈ(௞௛)మ ቃ   (33) 

which is the dispersion relation of the governing equations. Setting  = -0.39 and 1 = +1/3 
recovers the Boussinesq-type equations of Nwogu (1993) for demonstration here.  



 

Introducing the dimensionless parameter 
h/x in the numerical dispersion relation 
(2) allows direct comparison of the wave 
propagation characteristics of the modified 
and original partial differential equations. 
Figure 1 plots the errors of the numerical 
celerity തܿ in relation to Airy wave theory.
Modelers can identify the spatial 
x to achieve an acceptable level of 
convergence for a given water depth 
parameter kh. The same information can 
also be used to offset theoretical 
limitations of the governing equations 
through discretization errors. 

The effective resolutions ഥ߱t and 
providing important metrics for its performance. 
scheme introduces additional degrees of freedom, 
properties at the expense of bounded oscillatory errors in the low
Webb, 1993). Research in this ar
computational experiments are being conducted to verify
including an analysis of the subtle oscillatory features 
associated with the original and modified partial differential equations

3. Modeling of Wave Overtopping

Depth-integrated wave models provide an effective tool to describe
results might be unstable or questionable when overtoppin
involved. The HLLS Riemann solver presented by Murillo and Garcia
account for shallow-water flow across a bottom step. 
equation  (1),  the  Riemann  problem
separated by an initial surface 
over the bottom step as illustrated in Figure 2. 
In the analytical solver, the step imposes a 
hydrostatic force on the flow maintaining the 
local surface discontinuity 
propagate away in the form of a shock or 
rarefaction. The HLLS Riemann 
uniquely define the middle-state fluxes on the 
two sides of the step. Application of the solver 
had been limited to stepwise approximati
irregular topography for conservation of the 
hyperbolic flow character. The project 
demonstrated for the first time its potential to 
describe overtopping and the resulting 
characteristic flows.  
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We implemented the HLLS Riemann solver in a second-order MUSCL-Hancock scheme as a 
proof-of-concept. The scheme involves time integration of the conserved variables from the 
governing equation (1) through a predictor and a corrector step as  
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where the indices i and i±½ denote cell center and interface variables and n is the current time 
step. The predictor step (4) evolves the conserved variables over a half time step based on the 
flux and source terms at the current time. The predicted variables revise the source term and 
along with the solver define the fluxes on the left and right sides of the interface, denoted by F 
and F+ in equation (5), for update of the flow over a full time step. 

This Godunov-type scheme discretizes a conservative system with a series of cells and solves the 
HLLS Riemann problem at each interface to capture flow discontinuities. Both the predictor and 
corrector steps involve reconstruction of the interface fluxes from the conserved variables at the 
cell centers. The second-order scheme defines the variables as piece-wise linear in each cell. The 
surface-gradient method proposed by Zhou et al. (2001) reconstructs the interface surface 
elevation instead of the flow depth to eliminate depth-interpolation errors. To reduce spurious 
oscillations, a slope limiter is applied to remove unrealistic gradients across discontinuities 
during the variable reconstruction. The minmod limiter, which works well with the present 
problem, is applied to both the surface elevation and momentum before the computation of the 
interface fluxes. A bottom step can represent the front or back wall of a vertical structure for 
modeling of overtopping. Because of the large elevation difference between the adjacent cells, a 
second-order limiter provides unrealistic reconstructed values at the interface. A first-order 
limiter with upwind or downwind bias is applied within the cells adjacent to the wall. The use of 
flow information from the respective side avoids creating an artificial gradient across the step. 
This local treatment is important for approximation of flows across a large bottom discontinuity 
and maintaining accuracy and stability of the model results. 

4. CFD Experiment 

OpenFOAM (Open source Field Operation and Manipulation) is an open-source CFD toolbox 
that enables customization of applications in continuum mechanics and chemical processes. The 
InterFOAM solver within OpenFOAM makes use of the volume of fluid (VoF) technique to 
track the interface of a two-phase flow (Weller et al., 1998). A scalar function defines the ratio of 
air to water in each computational cell and typically a value of 0.5 delineates the free surface. 
With sufficient resolution, this technique can resolve splashing and air entrainment to 
realistically describe the flow field across a large bottom step. This feature is important for 
validation of the HLLS Riemann solver. The InterFOAM module solves the Navier-Stokes 
equations for each phase simultaneously. For this application, the fluid viscosity is set to zero. 
The resulting Euler equations in two dimensions are utilized for consistency with the inviscid 
fluid assumption in the Riemann problem.  
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We conducted a series of numerical tests, which include various combinations of the left and 
right initial states separated by a surface discontinuity over a step as illustrated in Figure 2. Each 
test case is devised to mimic or isolate an aspect of the Riemann problem for direct comparison 
with the solution from OpenFOAM. The computational domains correspond to a flume of 60 m 
long and 2.5 m high with the bottom step at the center. The height of the domain is not a factor in 
the depth-integrated model and the vertical wall of the step is modeled by the interface of the two 
adjacent cells. The initial conditions also define the steady upstream boundary conditions on the 
left side, while a reflective condition is imposed at the downstream boundary. Bed friction is not 
considered in the depth-integrated model to be consistent with the Riemann problem, while the 
free slip condition and a zero pressure gradient are applied at all boundaries in OpenFOAM. 
Sensitivity tests showed a grid size of 0.05 m in the depth-integrated model can accurately 
capture the shock waves and a grid size of 0.02 m by 0.02 m in OpenFOAM produces 
converging numerical results for the test cases.  

Overtopping of a structure involves a series of hydraulic processes that are fundamental of the 
characteristic flows embedded in the HLLS Riemann Solver. The incoming flow is partially 
reflected from the front wall, while developing into a surge on the initially dry crest prior to 
spilling over the back wall of the structure.  Figure 3 compares the results with OpenFOAM for a 
test case involving the upstream and surge 
processes. With an initial still-water 
condition, both models produce a jump at the 
step and a rarefaction wave propagating to 
the left as shown in Figure 3a. OpenFOAM 
shows gradual development of the jump and 
noticeable modulation of the rarefaction 
from the transient circulation by the step. 
Figure 3b illustrates the results with an initial 
flow velocity toward the step. The depth-
integrated model produces a stationary jump 
at the step as well as a reflected shock wave 
instantly. The middle state and shock height 
remain steady throughout the simulation. 
The sequence of snapshots indicates the 
jump and reflection from OpenFOAM 
develop gradually from the incoming flow 
redirected upward by the step. The jump 
increases over time reaching the same level 
as the depth-integrated prediction. The 
reflected wave subsequently develops into a 
steady state with a greater height than the 
shock. The hydrostatic assumption in the 
HLLS Riemann solver deviates when a 
circulation develops in front of the step. 
Despite the discrepancies in the upstream 
flow, the depth-integrated model gives 
excellent agreement with OpenFOAM for 
the surge on the dry bed in both cases. 

 

Figure 3. Reflection and overwash of a discontinuous 
flow onto a dry bed. (a) UL = 0. (b) UL = 2 m/s. The 
dotted, dash, and solid lines denote the initial surface 
elevation, depth-integrated model, and OpenFOAM. 
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Figures 4a and 4b illustrate the results for the 
downstream processes involving free fall of 
water without and with an initial velocity. 
The depth-integrated model gives an 
accurate account of the rarefaction waves 
and thus the overtopping rates in both cases. 
The OpenFOAM results show more detailed 
processes including detachment of the 
waterfall from the wall. The impinging jet 
produces an unsteady air-water circulation 
by the step and a surge in the downstream 
direction. The depth-integrated model 
produces a steady flow from the step that 
gradually transitions into a surge. The source 
term in these cases does not physically 
translate to the hydrostatic force on the step 
as in the formulation of the HLLS Riemann 
solver,  but  rather  provides  a  mechanism  to 

 

 

Figure 4. Free fall of a discontinuous flow onto dry 
bed. (a) UL = 0. (b) UL = 2 m/s. The dotted, dash, and 
solid lines denote the initial surface elevation, depth-
integrated model, and OpenFOAM. 

account for the potential energy of the waterfall and its contribution to the momentum of the 
downstream flow. Although the formulation of the Riemann problem does not account for the 
waterfall, the depth-integrated model gives good qualitative agreement with OpenFOAM for the 
resulting surge. 

The computations were performed on an Intel I-7 processor for an elapsed time of 4 to 5 sec 
before the characteristic flows reach the boundaries. The time step is determined from a Courant 
number of 0.5 for the depth-integrated model and dynamically within OpenFOAM to maintain a 
stable solution. OpenFOAM was compiled and executed in the serial mode to compare with the 
computing time from the depth-integrated model. OpenFOAM takes approximately 8 hr for a 5 
sec simulation, while the depth-integrated model can complete the calculation with less than 4 
min in the Matlab environment. The computational cost of OpenFOAM will be substantially 
higher if a turbulence model is included. Although the computing time depends on many factors 
that vary between the two models and their operating environments, the results provide a general 
indication of the relative computational requirements. The depth-integrated model provides a 
highly efficient solution to the overtopping problem if only the characteristic flow patterns are of 
interest.  

5. Laboratory Experiment 

The laboratory experiment provided measurements of the reflection and transmission as well as 
the mixing processes from overtopping of a vertical structure by solitary waves. The collected 
data allows validation of the HLLS Riemann solver implemented in the depth-integrated model. 
Figure 5 illustrates the setup of the laboratory experiment at the Hydraulic Laboratory of the 
Department of Civil and Environmental Engineering, University of Hawaii.  

The flume is 9.14 m long, 0.1524 m wide, and 0.39 m high with clear acrylic walls. The structure 
is 0.0762 m wide and 0.1524 m tall made from clear acrylic. A piston-type wavemaker generates 



 

the incident solitary wave, which allows precise measurements of 
model validation (e.g., Roeber and Cheung, 2012; Quiroga and Cheung, 2013). The incident 
wave height a is measured from the still
sample the surface elevations at 76 Hz with an un
structure provides measurements of the incident and reflected waves. Gauge 2 just outside the 
downstream mixing zone capture
flow. The wave gauges are connected to a data acquisition system controlled by the WinLabEM 
software.  

Figure 5. Setup of 

The clear acrylic flume allows illumination of the air
underneath and provides unobstructed views of the flow during the experiment. A high
camera with a Nikkor 50mm f/1.8D lens capture
fps. The camera is placed at 2 m from the wave flume, at an elevation of 0.12192 m above the 
bottom, and a distance of 0.22 m downstream of the structure. 
Toolbox allows refinement of the image contrast and extract
face of the flume for comparison with the model results. The post
video data includes correction for lens distortion and parallax error as well as mapping o
coordinates to real-world coordinates (Brady et al., 2004). The error is greatest near the edges of 
view and is much smaller at the image directly in front of the camera
The post-processed images, which have been cropped 
mixing processes and their effects on wave regeneration in comparison with the 
model results. 

6. Model Validation 

The depth-integrated model covers a flume of 10 m long with the structure located at th
to reproduce the laboratory test conditions
and back walls of the structure as opposing steps connected by computational cells along the 
crest. The incident solitary wave is defined as part of the 
wave has an infinite wavelength
computational domain. The initial wave is positioned along the flume such that the surface 
elevation at the structure is less than 1% of the wave height. Numerical dispersion, which 

7 

the incident solitary wave, which allows precise measurements of the flow characteristics for 
model validation (e.g., Roeber and Cheung, 2012; Quiroga and Cheung, 2013). The incident 

is measured from the still-water level. Three capacitance-type wave gauges 
sample the surface elevations at 76 Hz with an uncertainty of 5×10-5 m. Gauge 1 in front of the 
structure provides measurements of the incident and reflected waves. Gauge 2 just outside the 
downstream mixing zone captures the regenerated waves, while gauge 3 records the downstream

re connected to a data acquisition system controlled by the WinLabEM 

Figure 5. Setup of the laboratory flume experiment. 

The clear acrylic flume allows illumination of the air-water interface with LED lights placed 
underneath and provides unobstructed views of the flow during the experiment. A high
camera with a Nikkor 50mm f/1.8D lens captures the overtopping and mixing processes at 400 

s placed at 2 m from the wave flume, at an elevation of 0.12192 m above the 
bottom, and a distance of 0.22 m downstream of the structure. The MATLAB Image Processing 

the image contrast and extraction of the surface profile on the front 
face of the flume for comparison with the model results. The post-processing of the high
video data includes correction for lens distortion and parallax error as well as mapping o

world coordinates (Brady et al., 2004). The error is greatest near the edges of 
view and is much smaller at the image directly in front of the camera, where overtopping occurs

processed images, which have been cropped accordingly, allow examination of the 
mixing processes and their effects on wave regeneration in comparison with the 

model covers a flume of 10 m long with the structure located at th
to reproduce the laboratory test conditions. The one-dimensional model accounts for the front 
and back walls of the structure as opposing steps connected by computational cells along the 
crest. The incident solitary wave is defined as part of the initial conditions. Because a solitary 
wave has an infinite wavelength in theory, it is necessary to truncate its tails for the finite 
computational domain. The initial wave is positioned along the flume such that the surface 

less than 1% of the wave height. Numerical dispersion, which 

the flow characteristics for 
model validation (e.g., Roeber and Cheung, 2012; Quiroga and Cheung, 2013). The incident 

type wave gauges 
m. Gauge 1 in front of the 

structure provides measurements of the incident and reflected waves. Gauge 2 just outside the 
the regenerated waves, while gauge 3 records the downstream 

re connected to a data acquisition system controlled by the WinLabEM 

 

water interface with LED lights placed 
underneath and provides unobstructed views of the flow during the experiment. A high-speed 

the overtopping and mixing processes at 400 
s placed at 2 m from the wave flume, at an elevation of 0.12192 m above the 

he MATLAB Image Processing 
the surface profile on the front 

processing of the high-speed 
video data includes correction for lens distortion and parallax error as well as mapping of pixel 

world coordinates (Brady et al., 2004). The error is greatest near the edges of 
, where overtopping occurs. 

accordingly, allow examination of the 
mixing processes and their effects on wave regeneration in comparison with the depth-integrated 

model covers a flume of 10 m long with the structure located at the center 
dimensional model accounts for the front 

and back walls of the structure as opposing steps connected by computational cells along the 
initial conditions. Because a solitary 

, it is necessary to truncate its tails for the finite 
computational domain. The initial wave is positioned along the flume such that the surface 

less than 1% of the wave height. Numerical dispersion, which 



 

depends on the spatial discretization
solitary wave profile in lieu of the dispersion terms in the governing equation (1)
on the upstream side requires a large value to provide sufficient dispersion for the given water 
depth (Yoon et al., 2007), but is limited to 4.5 cm for resolution of the wave processes. The 
structure and the downstream side have a finer gr
processes. A Manning number of 0.009 s/m
surface. An open boundary condition is imposed at both ends of the computational domain

The laboratory experiments provided important data 
modeling of wave overtopping. Figure 6 
same water depth on both sides equal to the height of the structure and the incident wave
condition of a/h1 = 0.3. The overtoppin
downstream flow that violates the basic structure of a depth
of the structure, the model provides a 
good depiction of the incident wave 
profile. The larger and more abrupt 
reflection from the front wall, as 
indicated by the second peak, results 
from the HLLS Riemann solver, in 
which the shock approximation 
overestimates the reflected wave height 
under transient conditions (See Figure 3
and associated discussion). The incident 
wave subsequently transforms into a 
surge on the structure that in turn 
transitions from supercritical to 
subcritical across the back wall. The 
video image shows good overall 
agreement of the model results with the 
measurements except near the structure, 
where the actual transition of the flow 
regime is more gradual and further 
downstream due to formation of a 
submerged jet above initially stagnant 
water. Gauges 2 recorded a transient 
initial pulse generated by the submerged
jet and surface disturbances associated 
with unsteady circulations in the mixing 
zone. The measurements at gauge 3 
show a well-developed solitary wave 
followed by trailing oscillations with 
diminishing amplitude. The model 
produces a solitary wave of comparable 
amplitude and phase but with steepened 
front face due to the absence
dispersion terms in the governing 
equation. 
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which the shock approximation 

ve height 
See Figure 3 

). The incident 
wave subsequently transforms into a 
surge on the structure that in turn 
transitions from supercritical to 
subcritical across the back wall. The 

od overall 
agreement of the model results with the 
measurements except near the structure, 

transition of the flow 
is more gradual and further 

downstream due to formation of a 
submerged jet above initially stagnant 

corded a transient 
submerged 

jet and surface disturbances associated 
with unsteady circulations in the mixing 
zone. The measurements at gauge 3 

developed solitary wave 
followed by trailing oscillations with 

shing amplitude. The model 
produces a solitary wave of comparable 
amplitude and phase but with steepened 

absence of 
in the governing 

Figure 6. Comparison of numerical and laboratory results
for wave overtopping. (a) Computed (dash line) and 
recorded (solid line) surface elevation time series at wave 
gauges. (b) Recorded image and computed surface profile 
(white circles). The water surface in the recorded image is 
highlighted as needed for ease of compariso
line indicates the initial surface elevation.

, is needed to maintain the incident 
solitary wave profile in lieu of the dispersion terms in the governing equation (1). The grid size 
on the upstream side requires a large value to provide sufficient dispersion for the given water 
depth (Yoon et al., 2007), but is limited to 4.5 cm for resolution of the wave processes. The 

-related hydraulic 
is used to account for the friction on the acrylic 

surface. An open boundary condition is imposed at both ends of the computational domain. 

the HLLS Riemann solver for 
baseline test case with the 

both sides equal to the height of the structure and the incident wave 
entrainment in the 

At gauge 1 in front 

  

. Comparison of numerical and laboratory results 
(a) Computed (dash line) and 

recorded (solid line) surface elevation time series at wave 
gauges. (b) Recorded image and computed surface profile 
(white circles). The water surface in the recorded image is 
highlighted as needed for ease of comparison. The dotted 
line indicates the initial surface elevation. 



 

The CFD experiments have already shown the capability of the HLLS Riemann solver in 
describing complex flows generated by a waterfall. 
cases with formation of a water jet
is half of the structure height. The 
smaller incident wave height of
0.2 produces a longer solitary wave
a more enduring flow from the water jet
The model results at gauge 1 are
sensitive to the downstream flow and 
are similar to those in the first example.
The video image shows a jet from the 
structure impinging the water surface 
with significant air entrainment.
2 recorded a large leading wave 
followed by surface disturbances 
generated by the mixing processes, 
while the measurements at gauge 3
show a distinct solitary wave
model gives a reasonable description of 
the wave generation through potential 
energy release from the jet, but 
underestimates the amplitude and speed 
of the downstream solitary wave in 
comparison with the gauge 
measurements. A review of the 
remaining 28 tests shows the model has 
better performance for smaller 
amplitude and longer waves supporting 
the use of the HLLS Riemann 
However, the discrepancies in the 
upstream reflected wave height and 
downstream propagation speed remain 
in most of the tests. These are related to 
the circulation in front of the structure 
and the impinging jet in the mixing zone 
that are not amenable to the depth
integrated approach. 

The HLLS Riemann solver, which incorporates effects of
proved both efficacious and efficient in modeling of free surface flow over a structure. This 
rather simple approach can greatly enhance the use of
modeling of coastal wave processes
research in coastal wave modeling.
Boussinesq model to include effects of wave dispersion. However, precautions are deemed 
necessary in the interpretation of the model results due to the hydrostatic approximation of the 
source term, the shock assumption of the middle state, and the depth
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The CFD experiments have already shown the capability of the HLLS Riemann solver in 
generated by a waterfall. Figure 7 shows one of the more critical test 

water jet in the air from the overtopping.  The downstream water
the structure height. The 

smaller incident wave height of a/h1 = 
produces a longer solitary wave and 

the water jet. 
results at gauge 1 are not 

sensitive to the downstream flow and 
to those in the first example. 

from the 
structure impinging the water surface 

air entrainment. Gauge 
2 recorded a large leading wave 

surface disturbances 
generated by the mixing processes, 
while the measurements at gauge 3 

a distinct solitary wave. The 
model gives a reasonable description of 
the wave generation through potential 

rom the jet, but 
the amplitude and speed 

of the downstream solitary wave in 
comparison with the gauge 

A review of the 
remaining 28 tests shows the model has 
better performance for smaller 
amplitude and longer waves supporting 

Riemann solver. 
However, the discrepancies in the 
upstream reflected wave height and 
downstream propagation speed remain 
in most of the tests. These are related to 
the circulation in front of the structure 

xing zone 
that are not amenable to the depth-

Figure 7. Comparison of numerical and laboratory results
for jet formation. (a) Computed (dash line) and recorded 
(solid line) surface elevation time series at wave gauges. 
(b) Recorded image and computed surface profile (white 
circles). The water surface in the recorded image is 
highlighted as needed for ease of comparison. The dotted 
line indicates the initial surface elevation.

solver, which incorporates effects of a bottom step in the 
proved both efficacious and efficient in modeling of free surface flow over a structure. This 
rather simple approach can greatly enhance the use of the depth-integrated 

processes. This opens up many research opportunities for further 
research in coastal wave modeling. Similar extension can be made to a non

model to include effects of wave dispersion. However, precautions are deemed 
etation of the model results due to the hydrostatic approximation of the 

source term, the shock assumption of the middle state, and the depth-integrated flow structure in 

The CFD experiments have already shown the capability of the HLLS Riemann solver in 
Figure 7 shows one of the more critical test 

The downstream water depth  

 

. Comparison of numerical and laboratory results 
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age and computed surface profile (white 

circles). The water surface in the recorded image is 
highlighted as needed for ease of comparison. The dotted 
line indicates the initial surface elevation. 

a bottom step in the source term, has 
proved both efficacious and efficient in modeling of free surface flow over a structure. This 

integrated approach for 
This opens up many research opportunities for further 

can be made to a non-hydrostatic or 
model to include effects of wave dispersion. However, precautions are deemed 

etation of the model results due to the hydrostatic approximation of the 
integrated flow structure in 
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the solver. Some of these issues can be resolved by the use of an exact Riemann solver, which 
requires additional constraints to define a unique solution (e.g., Alcrudo and Benkhaldoun, 2001;  
Bernetti et al., 2008). Additional CFD and large-scale laboratory tests are necessary to evaluate 
and identify empirical processes that help calibrate the solver beyond its hydrostatic 
assumptions. 

7. Training and Education 

An important part of the project was to provide training, research opportunities, and financial 
support to graduate students in the Department of Ocean and Resources Engineering at the 
University of Hawaii. There are well-qualified admission applicants, but the number of students 
enroll in the program primarily depends on the available research assistantships. The following is 
a list of graduate students, who received support from ONR Grant N00014-12-1-0721, and their 
current employment: 

1. Morgan A. Stephenson (MS 2015), Coastal Engineer, Sea Engineering Inc., Honolulu, 
Hawaii. 

2. Matthew J. Wesley (MS 2015), Coastal Engineer, US Army Corps of Engineers, Los 
Angeles District, California. 

3. Troy W. Heitmann, PhD Candidate in Ocean and Resources Engineering, University of 
Hawaii, Honolulu, Hawaii. 

They have produced quality research work suitable for publication in refereed journals and 
international conference proceedings. Both MS graduates are working in an increasingly 
important engineering field in the US and around the world. Troy Heitmann, who is currently 
wrapping up his PhD dissertation, will graduate in the summer of 2017. He plans to continue his 
research and obtain a faculty position in the near future. 

8. Concluding Remarks 

The research project has advanced our understanding on a number of issues related to coastal 
wave modeling. These include development of a numerical dispersion relation defining the 
amplitude and phase errors from the sampling intervals in time and space as well as an extension 
of depth-integrated models to account for three-dimensional effects of wave overtopping. 
Scientists and engineers currently rely on numerical experiments to estimate model errors or use 
their experience to determine the required resolution in the model setup. The numerical 
dispersion relation replaces this empirical approach by quantifying effects of discretization on 
the numerical results. The extension of depth-integrated models to account for wave overtopping 
greatly enhances the model capability in describing complex flow patterns in the littorals and 
provides reliable results for practical application. 

The analytical and numerical tools developed in this study have enhanced the capability to model 
the operating and design environments for vessels in the littorals. Concurrent ONR projects are 
investigating the use of CFD codes, such as CFDShip-Iowa, LS-DYNA, and OpenFOAM 
(NavyFOAM), for modeling of ship loads and motions. A systematic, nested-grid approach can 
link coastal wave and CFD modeling to produce a realistic, virtual coastal environment for 
seakeeping analysis. 
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